Simple Probabilistic Predictions for Support Vector Regression
نویسندگان
چکیده
Support vector regression (SVR) has been popular in the past decade, but it provides only an estimated target value instead of predictive probability intervals. Many work have addressed this issue but sometimes the SVR formula must be modified. This paper presents a rather simple and direct approach to construct such intervals. We assume that the conditional distribution of the target value depends on its input only through the predicted value, and propose to model this distribution by simple functions. Experiments show that the proposed approach gives predictive intervals with competitive coverages with Bayesian SVR methods.
منابع مشابه
Support vector regression with random output variable and probabilistic constraints
Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...
متن کاملThe Porosity Prediction of One of Iran South Oil Field Carbonate Reservoirs Using Support Vector Regression
Porosity is considered as an important petrophysical parameter in characterizing reservoirs, calculating in-situ oil reserves, and production evaluation. Nowadays, using intelligent techniques has become a popular method for porosity estimation. Support vector machine (SVM) a new intelligent method with a great generalization potential of modeling non-linear relationships has been introduced fo...
متن کاملGaussian Processes for Natural Language Processing
Gaussian Processes (GPs) are a powerful modelling framework incorporating kernels and Bayesian inference, and are recognised as stateof-the-art for many machine learning tasks. Despite this, GPs have seen few applications in natural language processing (notwithstanding several recent papers by the authors). We argue that the GP framework offers many benefits over commonly used machine learning ...
متن کاملDetermination of 137Ba Isotope Abundances in Water Samples by Inductively Coupled Plasma-optical Emission Spectrometry Combined with Least-squares Support Vector Machine Regression
A simple and rapid method for the determination of 137Ba isotope abundances in water samples by inductively coupled plasma-optical emission spectrometry (ICP-OES) coupled with least-squares support vector machine regression (LS-SVM) is reported. By evaluation of emission lines of barium, it was found that the emission line at 493.408 nm provides the best results for the determination...
متن کاملAn Empirical Analysis of Constrained Support Vector Quantile Regression for Nonparametric Probabilistic Forecasting of Wind Power
Uncertainty analysis in the form of probabilistic forecasting can provide significant improvements in decision making processes in the smart power gird for better integrating renewable energies such as wind. Whereas point forecasting provides a single expected value, probabilistic forecasts provide more information in the form of quantiles, prediction intervals, or full predictive densities. Th...
متن کامل